Spectral graph theory: Three common spectra∗

نویسنده

  • Steve Butler
چکیده

In this first talk we will introduce three of the most commonly used types of matrices in spectral graph theory. They are the adjacency matrix, the combinatorial Laplacian, and the normalized Laplacian. We also will give some simple examples of how the spectrum can be used for each of these types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...

متن کامل

SPECTRAL AND COMBINATORIAL PROPERTIES OF FRIENDSHIP GRAPHS, SIMPLICIAL ROOK GRAPHS, AND EXTREMAL EXPANDERS by

Algebraic combinatorics is the area of mathematics that uses the theories and methods of abstract and linear algebra to solve combinatorial problems, or conversely applies combinatorial techniques to solve problems in algebra. In particular, spectral graph theory applies the techniques of linear algebra to study graph theory. Spectral graph theory is the study of the eigenvalues of various matr...

متن کامل

Spectral Theory of Infinite Quantum Graphs

We investigate spectral properties of quantum graphs with infinitely many edges without the common restriction on the geometry of the underlying metric graph that there is a positive lower bound on the lengths of its edges. Our central result is a close connection between spectral properties of a quantum graph with Kirchhoff or, more generally, δ-type couplings at vertices and the corresponding...

متن کامل

Eigenvalues of Graphs

The study of eigenvalues of graphs has a long history. Since the early days, representation theory and number theory have been very useful for examining the spectra of strongly regular graphs with symmetries. In contrast, recent developments in spectral graph theory concern the effectiveness of eigenvalues in studying general (unstructured) graphs. The concepts and techniques, in large part, us...

متن کامل

Spectral Recognition of Graphs1

At some time, in the childhood of spectral graph theory, it was conjectured that non-isomorphic graphs have different spectra, i.e. that graphs are characterized by their spectra. Very quickly this conjecture was refuted and numerous examples and families of non-isomorphic graphs with the same spectrum (cospectral graphs) were found. Still some graphs are characterized by their spectra and seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006